Performance Comparison for Different Approaches using Micro-Averaged F1-Score
Approach Transductive Supervised Transductive Unsupervised Inductive Supervised Inductive Unsupervised
Random Baseline 0.20 0.20 0.20 0.20
Raw Features 0.59 0.59 0.49 0.49
GCN Kipf et al. (2017) 0.58 0.60 0.43 0.61
GraphSAGE-MEAN Hamilton et al. (2017) 0.62 0.67 0.60 0.60
GraphSAGE-MEANPOOL Hamilton et al. (2017) 0.81 0.69 0.45 0.61
GraphSAGE-MAXPOOL Hamilton et al. (2017) 0.80 0.68 0.44 0.55
GraphSAGE-LSTM Hamilton et al. (2017) 0.81 0.69 0.45 0.59
GAT Velickovic et al. (2018) 0.75 0.69 0.43 0.51
GIN Xu et al. (2018) 0.78 0.69 0.46 0.47
GAIN (ours) 0.81 0.71 0.59 0.56
% gain over Baseline 37% 20% 22% 24%